Pearson Edexcel

Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in Chemistry (4CH1) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4CH1_1C_msc_2020305
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
5 (a) (i) (ii) (iii)	S T and U U		1 1 1
(b)	A description that makes reference to the following three points M1 (add) bromine water M2 no change / stays orange M3 (bromine water) decolourised / changes (from orange) to colourless	ACCEPT $\mathrm{Br}_{2}(\mathrm{aq})$ ALLOW no reaction If initial colour of bromine water is given in M2 or M3 it must be correct -ALLOW any combination of orange/yellow/brown - but penalise once only If bromine given for M1 then in M2 and M3 allow any combination of red/orange/brown/yellow M2 and M3 dep on bromine water/bromine in M1 If no reagent and correct M2 and M3 - score 1 if incorrect reagent and correct M2 and M3 score 0 IGNORE clear REJECT discoloured ALLOW M1 acidified potassium manganate(VII) M2 no change/stays purple M3 decolourised / goes colourless	3

Question number	Answer	Notes	Marks
5 (c)	Any two of the following points M1 (can be represented by a) general formula M2 each member differs from the next by a CH_{2} group OWTTE M3 (each member has) same functional group M4 (each member has) similar/same chemical properties / similar/same (chemical) reactions M5 trend in physical properties (between successive members)	ACCEPT react in similar/same way ACCEPT named physical property, e.g. boiling point REJECT similar/same physical properties	2
(d) (i) (ii)	but-1-ene Either Or	ALLOW 1-butene ACCEPT cis or trans isomer REJECT displayed formulae of cyclic alkanes	1 1

Question number	Answer	Marks
7 (a) (i) (ii) (iii)	B bromine A is incorrect as astatine is a solid C is incorrect as chlorine is a gas D is incorrect as iodine is a solid C chlorine (as it is pale green) A is incorrect as astatine is black B is incorrect as bromine is brown C is incorrect as iodine is dark grey A astatine B is incorrect as bromine is more reactive than astatine C is incorrect as chlorine is more reactive than astatine D is incorrect as iodine is more reactive than astatine	1 1 1

(b) (i)	M1 (colourless solution turns) brown M2 (solution stays) brown / no change	ALLOW no reaction	2
(ii)	bromine would not react with (sodium) bromide / bromine cannot displace itself OWTTE	ALLOW bromine cannot react with itself ALLOW both contain bromine/same element/same halogen ALLOW because no reaction would occur REJECT bromine cannot displace bromide	1
(iii)	$\mathrm{Br}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaBr}+\mathrm{I}_{2}$	ACCEPT correct ionic equation $\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2}$ ALLOW multiples and fractions	1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
9 (a) \\
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
to minimise/prevent (mass loss by) evaporation of the (liquid) fuel OWTTE \\
soot/carbon \\
An explanation that links the following two points. \\
M1 incomplete combustion (occurs) \\
M2 (because) the air/oxygen supply is limited OWTTE
\end{tabular} \& \begin{tabular}{l}
ALLOW to find mass of fuel used/burned \\
REJECT copper oxide \\
ALLOW mark for soot/carbon if not seen in (i), unless copper oxide is mentioned in (i) \\
If copper oxide in (i) ALLOW 1 mark for (because) copper reacts with oxygen (in air)
\end{tabular} \& 1
1

2

\hline (c) (i) \& | - substitution into $Q=m c \Delta T$ |
| :--- |
| - calculation of heat energy in Joules |
| - conversion to kJ |
| Example calculation |
| $M 1 Q=100 \times 4.2 \times 30$ $M 2=12600(\mathrm{~J})$ $\mathrm{M} 3=12.6 \mathrm{~kJ}$ | \& | 12600 (J) with no working scores M1 and M2 |
| :--- |
| M2 ECF M1 |
| ALLOW approximately $=13 \mathrm{~kJ}$ |
| 12.6 kJ with no working scores 3 | \& 3

\hline
\end{tabular}

(ii)	- calculate the amount, in moles, of methanol - divide Q by the amount in moles - give the answer with the correct sign Example calculation M1 $0.96 \div 32$ OR 0.03 M2 $12.6 \div 0.03$ OR $420(\mathrm{~kJ} / \mathrm{mol})$ M3-420 (kJ/mol)	ACCEPT $13 \div 0.03$ OR 430/433 for M2 $\text { AND - } 430 /-433 \text { for }$ M3	3

Question number	Answer	Notes	Marks
10 (a) (i) (ii) (iii) (b)	$\mathbf{4} \mathrm{NH}_{3}+\mathbf{5} \mathrm{O}_{2} \rightleftharpoons \mathbf{4 N O}+\mathbf{6} \mathrm{H}_{2} \mathrm{O}$ reversible (reaction) to increase the rate of the reaction / to speed up the reaction OWTTE $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$	ACCEPT multiples and fractions ACCEPT reaction that goes both ways / both forwards and backwards reactions occur IGNORE references to equilibrium IGNORE references to lowering the activation energy ACCEPT multiples and fractions	1
(c) (i)	- calculate Mr_{r} of NO_{2} and HNO_{3} - calculate the amount, in moles, of NO_{2} - calculate the amount, in moles, of HNO_{3} - calculate the mass in tonnes of HNO_{3} Example calculation M1 M_{r} of $\mathrm{NO}_{2}=46 \quad \mathrm{M}_{\mathrm{r}}$ of $\mathrm{HNO}_{3}=63$ M2 $n\left(\mathrm{NO}_{2}\right)=11.5 \times 10^{6} \div 46$ OR $250000(\mathrm{~mol})$ M3 $n\left(\mathrm{HNO}_{3}\right)=\frac{2 \times 250000}{3}$ OR $167000 / 170000$ M4 $(167000 \times 63 \mathrm{~g})=10.5$ (tonnes) can be (re)used in stage 2 / to make more nitrogen dioxide (in stage 2) / can be used to make more nitric acid	ALLOW working in megamoles i.e. $11.5 \div 46$ OR 0.25 ALLOW ECF from incorrect Mr of NO_{2} calculator answer 166666.66 ALLOW working in megamoles i.e. $\frac{2 \times 0.25}{3}$ OR $0.167 / 0.17$ ALLOW ECF from M2 10.5 (tonnes) with no working scores 4 ACCEPT 10.7 (if 170000 used) ALLOW ECF from M3 ALLOW ECF from incorrect M_{r} of HNO_{3} IGNORE can be recycled/reused unless qualified	4

